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ABSTRACT
The bounded invertibility (as a linear map on Zw; say) of a bounded,
strictly m-banded biinfinite matrix A is shown to be equivalent to a
. . . . tt Zz . +
dichotomy or splitting of its kernel (as amap on R°) into Wl and
J°, with W' containing those which decay exponentially at +®, and ¥~
those which decay exponentially at =®, together with a certain uniformity
(with respect to the sequence index) of this direct sum decomposition. The
approximability of the solution of the biinfinite system 2ax =) by solutions
3 of finite sections of this system is characterized in terms of linear
R * + - *
independence, uniform as I -+ =(%*x), of YL over I U I, with I an

integer interval of length dim YU, * = +,-.
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SIGNIFICANCE AND EXPLANATION

pline approximation is often most effective when the breakpoint (knot)

) sequence can be chosen suitably nonuniform. At the same time, standard spline
approximation schemes (such as least-squares approximation by splines) are so
far only known to be bounded as long as the breakpoint sequence is almost
uniform. BAny such bound is obtained (explicitly or implicitly) in terms of a
bound on the inverse of certain matrices which are banded. Any attempt at
establishing bounds for more general breakpoint sequences must therefore come
to grips with the inverses of these band matrices. The hope is that Demko's
discovery of the exponential decay of band matrix inverses will lead
eventually to those desired bounds. f§\

In the present report, this exp;nential decay is related to the
exponential decay of solutions of the homogeneous problem Ax = 0. 1In

particular, proofs are provided for the statements made in the earlier report

MRC TSR 2049 entitled "what is the main diagonal of a biinfite band matrix?®
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DICHOTOMIES FOR BAND MATRICES
Carl de Boor

Dedicated to Garrett Birkhoff on the occasion of his 70th birthday

1. Introduction. 1In retrospect, the exponential decay of the Lagrange splines for

cubic spline interpolation at knots proved in Birkhoff and de Boor (1] appears as the first
instance in spline theory of exponential decay of band matrix inverses. Since then, the
exponential decay of band matrix inverses has been used successfully by I.J.Schoenberg and
others (see, e.g., [10]) in the analysis of cardinal splines in which the band matrices in
question are Toeplitz matrices, hence well known to have exponentially decaying inverses.
In adapting the proof of Douglas, Dupont and Wahlbin (6] for the boundedness of least~-
squares approximation by splines on a quasi-uniform mesh to more general spline
approximation schemes, S. Demko [5] discovered that, in a nontrivial way, all band matrix
inverses decay exponentially away from the main diagonal. At that time, I had used the idea
behind the Douglas, Dupont and Wahlbin argument to carry some of [1) over to odd-degree
spline interpolation at knots, but was pleased to find (in [2]) how nicely the idea behkinii
Demko's arqument simplified the proofs.

As a kind of afterthought, I proved in [2] that any nontrivial solution of the
biinfinite homogeneous linear system Ax = 0 must grow exponentially in at least one
direction in case A is a band matrix, bounded and boundedly invertible (on Ew , say).
with that in mind, though, further considerations of odd-degree spline interpolation at

knots led to the characterization of bounded invertibility (as a map on 2_ ) of a band

matrix in terms of a dichotomy or splitting of its kernel (as a map on Rz )» These results

were stated in [3] and are restated in greater detail and proved here.
I have to confess now that I became only recently familiar with the well established
theory of ordinary and exponential dichotomies for ordinary linear differential operators

in Banach space, particularly through Coppel's eminently readable book [4]). I have tried to

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




deduce the results presented here from those in Coppel's hook by reinterpreting band
matrices as difference operators and then going from the discrete to the continuous. But it
seemed, in the end, more satisfactory and "sachgerecht"” to arque directly in terms of band
matrices. Perhaps someone else will be more successful in this translation effort. In any
event, Coppel's book could be an inspiration to those studying biinfinite band matrices.
Here is an outline of the paper. In Section 2, it is proved that, for a strictly m-
banded matrix A, there exists an 2 _-columned matrix A7) for which aal") = 1 = al=)a
iff the kernel, ® , of A (as a map on Rz) is the direct sum of u: and ﬂ; B
with ﬂ; consisting of those elements of ‘ﬂﬂ which are bhounded at *o , In Section 3,
the hounded invertibility (on F.p } of a hounded strictly m-banded matrix A is shown to
be equivalent to having the elements of ‘ﬂ.; decay exponentially at *» together with a
certain uniformity condition. Finally, in Section 4, the approximabhilitv of the solution of
the hiinfinite system & o= 2 bv solutions of finite sections of this system is
characterized in terms of linear independence, uniform as I*~—' -(*=) , of ﬂA over

- * *
I+UI , with I an integer interval of lenath dim “’A .
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2. The index of a band matrix. The r-th diaagonal or band of the biinfinite matrix A

is the seauence (A(i-r,i))i_u_n°° . Here and below, A(i,j) denotes the (i,j)=-th entry of &,

A biinfinite matrix A is bhanded (or, a band matrix) if all but finitely many of its bhands

are zero. Such a band matrix A aives rise to a linear map on R , the linear space of
all real biinfinite seauences, and we will identify A with that map.

2 biinfinite matrix A is called m-banded if all but m+1 consecutive bands are
zero. (I chose the term "m~banded" in preference to "(m+l)-banded" since such a matrix is
equivalent to an m~th order difference operator, its kernel usually has dimension no higger
than m ,etc.) Thus A 1is m-banded iff for some &

A(i-2,3) ¥ 0 implies i < j < i+m .,

Unless otherwise indicated (e.g., by context), I will always assume that £ = 0 , This is

merely a normalization achieved by considerina F-EA instead of A , with E the shift,

(Fa)(i) := a(i+1), all i , all a in R%,

an invertible operator which preserves more or less all interesting structures in Rz .
The banded matrix A 1is called strictly w-banded if

(2.1) P(i,i)A(i,i+m) # 0, all i,

i.e., the first and last nontrivial band is never zero. This nontrivial assumption insures

that, for every i , every a in R" gives rise to one and only one sequence f with

Af = 0 and f(i+j) = ay,

J=1,e0e,m &
To put it differently, with
W= ®, := {(feR : A =0}
A = - -
denoting the kernel or nullspace of A , strict m-bandedness of A insures that
(2.2) for every i, the map tt——»nW : f+— f[i] is one-one and onto.
Here and below, f[i] denotes the m-vector (f(i+1),...,f(i+m)) . For a subset F of

RZ

, we use, correspondingly,
F(i] := {f[i] : feF} .

Also, it will he convenient to denote by 121 the inverse of the i-th map in (2.2), i.e.,

(2.3} for all fefl, E (fl4]) = £ .

ey s e
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E; is the "fundamental solution" for the homogeneous system

A= 0
which produces the particular solution f = E;a corresponding to the given initial
values f[i] = a .

It is the purpose of this paper to characterize certain aspects of strictly m=-lanie?

matrices in terms of their kernel., It is therefore important to realize that such matri~es

are essentially determined by their kernei.

Proposition 1. If W is an m-dimensional subspace of RZ which satisfies (2.2), then
there exists, up to left multiplication by an invertihble diagonal matrix, exactly one

strictly m-banded matrix A for which ﬂA =R,

We also introduce two subspaces of ‘51,

* J—
W = (£eB: Tim £(i) <=},
i+t
with * standing for either + or - . (We continue this convenient use of * throuchous:

the pape:.

#

Definition. The strictly m=banded matrix A has index k , or, index(2)
case “7‘ = ﬂ+ R and dim ﬂ+ =k .
A TA A

In particular, if A has index, then

+
mt :=  aim flp = index(2) ,
m~ :=  dim ﬂ; = m - index(A) .

The notion of index is introduced here since A has index iff A is "invertible" i-
a certain weak sense. In the followina statement of this eauivalence, we nse the "irac-
sequence §.  defined by

i
8,9 =6, -

Proposition 2. The strictly m-banded matrix A has index iff for everv i , thare

=y
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exists exactly one c; € 2 with &; = §. .
_ [ —l -1

This proposition is given in (3], but we give here its proof, sliohtlv altered, fnr

completeness.

Proof. Since W~ {\‘n+ is the kernel of A'Q , there is at most one solution (for anv

particular i ) if and only if W~ ni\" = {n} . Hence it is sufficient to nrove +hat, aiver

. + - ; ; : :
uniqueness, we have m 4+ m = m iff there is a snlution for every i .

For this, note that <3 satisfies Ay = éi iff

E; := Ei_1gi(i-1] on ]~=e,i+m|

(2.4) € = +
.= i i,0f

g; = E.c li] on li,=l
and

i+m
(2.5) I Ai,j) gi(j) = 1.

=i
In words, £ is necessarilv determined by the (m+1)-vector (Ei(i),...,gi(iﬂw)) : For
i<i+m, Si(j> coincides with the extension of Eifi-ﬂ = (Ei(i),...,gi(i+m-1)) to an

element of B, while, for i, (9 coincides with the extension of g¢,lil =
(g_i(i+1),...,£i(i+m)) to an element of W. Consequently, Ei e 2 iff

* *
(2.6) g, e .

Now assume m + m* = m . Mote that (2.4) - (2.A) constitute a linear svstem

2

D - O .

(2.7) Pileils,aem’

o .

in the m+1 unknowns Ei(i)""’ii(i““) , with the first m=m~  homogeneous eauations
ensuring that Ei-ﬁi“'” lies in R~ , i.e., gi{i-ﬂ € a-[i-‘l! , the next eauation, the
only inhomogeneous one, beina just (2.5), and the last m-m* homoaeneous eauations

+

+ . -
ensuring that Eiﬁi[i] lies in "v, i.e,, gi[i] e Wil . Since m~ +m =m by

assumption, this means that (2.7) has as many equations as unknowns and, since we alreadv
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know that it has at most one solution, the existence of a solution follows.

Conversely, assuring the existence of a snlution for every i , consider the maps

* +1 * *
¢ Rm — R :ar+— I C,
= ; J=1+)
3=0
. - - +
with * standing for + or =~ [(as before), and m:=m+m . Then F
1
R _ R _ . m+1 , if * = +
null ¢ = m+1 -~ rank ¢ > mdt - = .
mte1 , if % = |

+ -
Consequently, there exists a € ker¢ N kerd N\ {0} . For this a ,

a5 Ci4y # 0 i

la
n
o3

since (Ei) is obviously linearly independent. On the other hand, since

c, .(s) , for s < i+m
—i+j . -
c, .{s) = , 3=0,¢0.,m ,
i3 Y (s) , for s > i+m
si+j s) r
we find
m - :
ZO aj£i+j on leo,i+m|
4= _
m + L=
+
EO aj£i+j on Ji+m,e[
and therefore, by choice of a , d(s) =0 for s < i+m and s > i+m . This implies

+ - , + -
m > m , and therefore, since by assumption ¥U NA¥U = {0}, i.e., m+m < m, the

conelusion m* + m~ = m follows . |||

Example 1. Let A be the tridiagonal matrix whose rows are alternately 1,0,2 and

2,9,1 . Then the two sequences

f

+
f




= &

A R AT kel

»* *
are both in = fh and linearly indepvendent and, obviously, ¥l = span{£ } . Hence A

has index 1t . The construction of c; as in the proof boils down to wanting

on =, i+1]

[i+1,of

and
(2.8) Bli,i)g (i) + A(L,i+1)g; (141) + Ali,i+2)c;(i+2) = 1 .
This forces o and a+ to satisfy

+ _+ -~
(a £ = o f )i+l)

]
(=)

+ + - -
Ali,i+2)(a £ - a £ ){i+2) = 1

the latter from (2.8) usina the fact that jf e . m particular, since jf and f

+ -
vanish alternately (though never together), this shows that g = 0 iff ] #0 .

The nroof of Proonsition 2 yields the following additional facts.

(1) The nontrivial sequence 4 = Zaj£i+j in the second part of the proof has its
support in the interval [i+m, i+;], i.,e., at the sinale point i+m . Since (Eﬁ) is
linearly independent, it follows that, up to scalar multiple, (aj) is the unique (finite)
geauence for which ZajSi*j has its support at the sinale point i+m . In particular,

X m+1 :
there exists exactly one Ei € R for which
m
L2 Siej Siem *
j=n

This says that the banded matrix A' given by
A'(1,3) == gd_m(i-j+m)

satisfies

S ae . - s iy = . _ ;
L € (1At (k, ) z ij_m(k jrmig, (1) Egj_m(k)gk+j_m(1) gj(l) .
k k k

In other words, the matrix A(') whose k-th column consists of the lm-sequence

Lk

constructed in the proposition, all k, satisfies
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and this implies at once that aA' = (AA('))A' = A(A(')A') = A . (There is

difficulty here with the change in the order of summation, since all sums are e“7cnsjralo

finite.) This proves

Cbrollarz 1. If A has index, then 2 1is invertible in the sense trtat there exi=-s

a matrix A(-) {necessarilv unigue) whose columns are bounded and for whic»

a7 - 1 = a9
In particular, AT(A‘")T = 1, but there is no guarantee that the columns nf 2 "7
are bounded., For, with D any irvertible diagonal matrix, DA still has (the same) index,
but now
(oa; (=) = pl-)p?
some of whose rows may be made unbounded hy proper choice of D . For examnle, in Fxamrle

T

1 = AT(=) - A(o)T

m n
and as one easily verifies, hence both A and A* have inilex

1 . But, with D = diagl..., 21/2, eesl (DA)T has no index since YHDA)T contains the

1

bounded sequence D~ £7 , while, e.g., with D = diagl..., 24, ..., (om) 7T again has

index, but now index 2 . In particular, now
(om) (T x omT)
even though hoth matrices satisfy the equations

omnTx = 1 = xoomT

. R - . -~
(for X). The unigueness assertion for A( ) only covers lw-columneﬁ matrices n( N

A(—) does function as the inverse for M , at least as the inverse for 1 restricee:

to sequences of finite support.

(ii) A repeat of the second part of the proof of Proposition 2, but with m = =1

+ - : ; -
rather than equal to m + m , shows that (in case A has index) anv seanerce [ _a -

[P

+ - -
with a € ker$ f\kery must vanish identically, hence ker¢+n kerd = {f} . Since nerw

* * * * *
rank¢ =m - null¢ 2 m-m , this implies ranké¢ = m and so proves

Cbrollarz 2. If A has index, then, for every i, the map
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carries R" onto u‘ .

This corollary shows that any m consecutive columns of at-) supply all the
information needed to construct a basis for Xl,"' and W~ . Example 1 above shows that it
is usually not sufficient for this purpose to consider fewer than m consecutive columns.

We conclude from (2.4) and Corollary 2 that, for any i and any r » 0 , the columns

of

A(-)(i+1' cee i+m) and

(')(i“"l, ces o i4m oy
i=r-m+1,e.., i=-r

i+r+1, .00 ,itr+m’

span W'{i] and W [i] , respectively, hence have rank m' and m~ , respectively. This

implies
Corollary 3. If both A and AT have index and Alm)T aT=) , then
index(A) + index(AT) = m .

(iii) Finally, we use Oorollary 2 to point out a particularly useful choice for the

matrix B; in (2,7). We know that

. (o) gi+j(s) for s < itj+m
—it+j + i
gi+j(s) for s > it+j

Hence, from (orollary 2, the sequence Si-m[i"”' ooy 51_1[1-1] must contain a basis
for WN*'[i-1] , say 211[1-11, vees €4 4li=1] o since W[i-11 = W(i-1] & Wii-11 , we
m

+
can therefore find )‘:, eee, A + with support in [i,i+m~1) so that

+
A e, =6 B r,s=1,s0e,m

while in addition




+ -
ARl = {o} .
r

This gquarantees that

+

A e
r =g

= 0 for all r and all s2i

since, for s > i, g li-1] = c_li~1] .

Finally, the linear functional

i+m
a.: £ I a__f(3)
it - ., 13—
=1
has support in [i,i+m] and carries c. to zero for any j ¥# i (since then

3 S35011,i4m)
c.l. . . }, while a.,c., = 1. It follows that the two secuences
=j|[i,i+m] i—-1i
+ + - -
veey Sj _ and X1 seves A Y X1,..., Ao
m m m

C, s sss, <, r S, C.
-1 =i+ =i =
1 m oy

are biorthonormal., This gives

Corollary 4. If A has index, then the wmatrix B; in {2.7) can be chosen so that

i
B;1 is a submatrix of 2!} , specifically, so that
5;1 = A(-)(ii ’ . -.; 4 , i-'.-m )
grererd Ldidgeeeed
m m

for some i~-m < i1< vee < i . < i< j1 < ese ¢ F _ € idm
m m

\ -1 :
Example 1 shows that we cannot count on choosing Fi from consecutive columns of
A(-)

Corollary 4 shows that, if A is boundedly invertible on lp , i.0., if A(') is a
bounded map on £p , then Bi can be chosen hounded below uniformly in i . This will be
important when it comes to characterizing bounded invertibility of an m-banded matrix.

As a further illustration, let now A he a bhanded Toeplitz matrix. Then A is
strictly m-banded for some m , and, without loss of generality,

A9 = , all i,

a4

for some seaquence (ar) with a_ =0 for r ¢ 0 and r > m , and aoam #0 . Let z

r 17

eees 2, be the m zeros, counting multiplicity, of the characteristic polynomial Pp =

py for 2, given by

10
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m .
p (z) = z a, z] .
a j=0 3
If these zeros are all simple, then mh is spanned by the m sequences

z. := ( z, s iml,040,m.

-1 i j=-oo
In case of coincidences, sequences of the form
i) e . r=0,...,mi-1

appear, with m; the multiplicity of z; as a zero of P, . Consequently, A has index

iff lzil # 1, all i , i.e., iff pa(z) does not vanish on |z| = 1, and in that case
index(a) = #{ z; s fzil < 1} . This shows that our notion of index is an extension of
the index of a Toeplitz matrix as used, e,g., in (Gokhberg and Feldmann [7] . Further, if
our Toeplitz matrix A has index, then the elements of l; are not only bounded at ‘*w ,
but they actually ao to zero there exponentially fast. Such exponential decay also occurs
for general m-banded matrices, but only if the assumption that A have index can be

strengthened to A having a bounded inverse (as a map on lw , Sav).

3. Exponential decay. Exponential decay has been recognized as a characteristic

feature of the bounded inverse of a linear Adifferential operator for some time. Massera and
Schdffer (R] credit Perron ([9] with having first observed this (for nonautonomous systems).
Further, they have introduced the term "(exponential) dichotomy”" to describe the
concomitant property of the kernel, i.e., of the linear space of solutions to the
homogeneous problem, ton break up into two subspaces, with one consistina of those solutions
which are bounded (decay exponentially) at =o , and the other of those solutions which are
hounded (decay exponentially) at +« . In addition, their notion of "(exponential)
dichotomy” includes a certain uniformity with respect to the independent variahle of this
direct sum decomposition.

For the case of band matrices, this exponential decay is of course well recognized in
the special case of Toeplitz matrices, i.e., of constant coefficient difference equations.
Rut if there is a worked=-out theory for general band matrices to parallel the development

in, say, Coppel (4] for ordinary linear differential operators, I have not been ahle to

find it. I have only seen discussions in which the bands are assumed to bhecome constant
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asymptotically.

All results concerning the exponential decay of inverses of hand matrices «<an & Faond

on the following theorem due to Demko [5], or its ohvious generalizatinne.

Theorem 1., [Demko] If A is a finite invertible bhand matrix, then there exist

const and A € ]0,1[ which may depend on Ial , IIA-1II and the hand width nf 2 Yus n~n~*

on the order of A so that

(3.1) 18 7(5,49)] < const AMFTI a1 g

B simple proof which makes the constants const and XA explicit and rakes obvionus

how this result would apply in a multivariate situation (i.e., when i, j ranage over a

multidimengional grid) can be found in [2] (see the proof for Lemma 2 below). The essential

o i " i e A

feature of the arqument (and the wherefore of the exponential decay) is alrea’dv evident i

from the argument for the following lemma and its corollary (alse from [2'),

Lemma 1. If A is m~banded (with £ = 0), and bounded and boundedlv invertible as a !

map on R.p for some p < @ , then, for any f e‘lp and any i < 3 ,

P _
(3.2) 1| (4 .]u'D PR S VE| (iomie iP°
i.3]'p <P e [i-m,j+m] "p
with
K oi= nalia .
. 'os= - "= ; . ' [i=m,3" nd
Proof. Let f Ehlrjl P 4 -ﬂ[l-m,jﬂn] Then supp A ' € [i-m,i’ an

supp A_f_" = supp A(f-f") € 2ZN[(i-m,j] , hence

supp Af' N supp Af" = 4 .

Therefore




uaPuger® < agiPy = raPugn - £

> iag - aenP naem® o+ wpeenP
PY “-1"-p(":.,"p T

which proves (3.2). [}l]

OCorollary 1. If A is m~banded, and bounded and boundedly invertihle as a linear =~ar

on lp for some p < ® , then, for any f ¢ FKA and any i ,

(3.3) ug[i+jm]n§ > const Al3! ug[i}uz

either for j = 1,2,3,..., or else for j = -1,~2,-3,... , with
(3.4) A= P /P -, comst = o (A-1I/A .

Proof. let a := ug[i+vm]u§ . Then, from (3.2),

A z a < L a

-jeve Y —g<vey
hence
(3.5) e a, < I a .
~§€v<

Suppose now that (3.3) is violated for some j =r and j =s with r <0 < s, and

assume without loss that r < -s and that j = r is the largest integer < -s for which

(3.3) is violated. Then, from (3.2) and the choice of r and s ,

uni g

I a < (A-1)-1(ar +a) < (A=1)"'const (27T + £5) 2,
(3.6) r<v<s
< 1 (A-r-1 + As-1) a
2 o °

On the other hand, by the choice of r and (3.5),

f -r s
z a, = z a, + z a, > const A——~%—:—%ﬂ——ll a, * A® 1an )
r<v<s r<vs=s ~-g<V<s
1 o A,,-r-1 s-1 s-1
E (A A ) oa, *+ A n
-r- -1
= 1T e
0

p which contradicts (3.6). {1

13 |




Corollary 2, If A is m-banded, and bounded and boundedly invertible on some !l.p
with p <« , then
*
thare exist const > 0, A > 1 so that, for all i , all _f_ € ﬂA '
(3.7) .
1£[4=(*9)mIl > const AT HELilN ,  §=1,2,3,...
The proof of Lemma 1 is based on the following observations: (i) the support of Ag

is only slightly larger than that of g , i.e.,

supp(Ag) € supp g + [-m,0] ;

and (ii) if f ¢ “A + then supp(dg) = supp A(f-g) . The second step cannot be used any 4

more when £ ¥ “A , but the same idea still works when Af has small support, e.g., when
A£ = ék .

f"

1 ¢ = =
, In this case, setting f' := f Z\{i-m,+m] ¢ L -g-lz\[i,j]

, we find

supp Af' € Z\ [i-m,]]

supp Af" & supp A(£-f") VU supp Af € [i-m,j] V {k}

so that, for k € {i-m,3j] , supp Af' N supp Af" = ¢ , and therefore, concluding as in

the proof of Lemma 1, we obtain

Lemma 2. If A is m-banded, and bounded and boundedly invertible as a linear map on

lp for some p < @ , then, for all i< j and all k € (i-m,]j], Af = ﬁk and f ¢ E.p
implies
{3.8) T4 P < Pt If 1P, with « = 4ALIA™
* =lz\[i-m,j+m) «Pey TIBNLEI Y ) : !
:
Corollary. If A is m~banded, bounded and boundedly invertible as a linear map on i
L for some 1< p< ® , then (A‘ )-1 = B‘ with ]
P L . !
P
I
(3.9) IB(i,4)] < const A!1-3!

for some const and some A € ]0,1{ which depend only on 1al, IA-1I and m .

o SN e B s = et
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Proof. Since UB(*,k)I < IA-1HP , the conclusion is immediate in case p <« ., If

p =« , then the lemma, applied to aT , gives the conclusion for BT rather than B .

But that is clearly enough. |||

Rs Demko has already stressed, such a corollary shows that A is boundedly invertible
on every kp if it is boundedly invertible on some lp . This raises the question of the
best choice of A in (3.9), which, from the argument, could be chosen as

P =-1,-p
U Al - A 't
D B °)

(3.10) A" = —= = 1 - /(i il )P
1al? o« waT P P P
P P

for any particular p . Since Icﬂp = ICTIP, with 1/p + 1/p* = 1, while (3.9) is

equivalent to the same statement for BT , we can always choose A as

(3.11) A 1 )min{p.p/(p-1)}

1 - 2/ min (NAK HA 1
1< p<e p

but it is not clear to me for what p this minimum might be taken on.
We are now ready to prove the main result of this section.

Proposition 3. Let A be a bounded strictly m-banded matrix. Then A is boundedly
invertible on lp iff (i) A has index; (ii) for each i , the matrix Bi in (2.7) can
-1

L4
be so chosen that sup, IBi I <= ; and (iii) the elements of ‘ﬂh decay exponentially

uniformly, i.e., (3.7) holds.

Proof. The sufficiency of these conditions is immediate: (i) allows the construction
of A'™?, (ih) implies that, for each i ,
1A0=)(144,4)] < const , §=0,...,m,

with const independent of i , and (iii) then implies that
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ia (*,1i) [i+mjll <€ const A , all j
for some const and some A € [0,1( independent of i or 3j . This shows 1) o nave
uniform exponential decay away from the "main" diagonal, hence alts) maps into itself
for any particular p € [1,2] . Since we already know that AA(') = 1 = A(')A , this
shows that
A(-)h = (A'l )7V ke
P P

The necessity is a bit harder to prove, but earlier results contain all of the work.
-1
If (A|£ ) exists, then, from the corollary to lLemma 2, A is boundedly invertible on
P
-1 -
L£_ ., hence A has index, and, since then (AIZ ) = A( ) L , condition (ii) fnllows
]

from Corollary 4 %o Proposition 2, while (1ii) follows directly from Corollary 2 to

Lemma 1 . |||

Remark. This necessary and sufficient condition for the bounded invertibility of a
strictly m-banded matrix is not quite the "exponential dichotomy"” introduced by Massera an:
Schiiffer to characterize the bounded invertibility of an ordinary linear differential
operator. As Coppel [4;Chap.2] describes it, such "exponential dichotomy" requires, in
addition to (3.7), that
(3.12) for some const and all i , all f € Kk, H(Qf) [118 < const NE[i)W ,
with Q the linear projector on EA agssociated with the decomposition Yk = R; ® n; B
i.e.,

+ -
ran Q =‘aA, ker Q -ﬂA .
In Proposition 3, this condition is replaced by condition (ii) which also prevents the
angle between ®*(i] and W [i] from going to zero, but in a different way. I do not U“now
whether (3.12) is necessary for the bounded invertibility of A , but I doubt it,

The argument does show that (i) and (iii) alone imply already the bounded

invertibility of DA for some suitably chosen invertible diagonal matrix D .

4. The main diagonal. In an attempt to understand how the inverse of a biinfinite

band matrix might be approximated by inverses of finite sections of A , one is naturally




led to the question of what might be the main diagonal of R . For a precise definitinn, we
need some notation.

Let I, J be inteqger intervals. Then

Pr,g 7 Mg < (A(l'J))iEI,jeJ

denotes the corresponding section of the biinfinite matrix A . We can think of Py g
’
simply as a |I|x|J}-matrix. But, AI'J also describes the nontrivial part of the linear
map P,AP, with

a(i) , ieI

(pra)ei) .
e , ig¢rI

More precisely, A is the matrix representation (with respect to the canonical basis)

I,J

of the linear map
l:’I(‘l‘ran P.)
]
and we will not distinguish hetween these two.
Suppose that 2 is m-banded, hounded and boundedly invertible. ™en we know that the
linear system
(4.1) & = b
has exactly one solution in lp in case b ¢ R,p . We may then trv to anoroximate the
solution x by truncation, i.e., by the solution X1 . if any, of the finite (scuare)
linear system
(4.1)' Xy = = Py Xp
with
{i+rI :ie 1)
and ry some integer.
Call this projection scheme suitable if (4.1)' has exactly one solution for all

large I and IIx-xIIIp m 0o .

.

Take specifically p < » , so that p converaes pointwise to the identity on £

I

as I —+ Z . Then (see, e.g., Gokhberg and Feldmann [7; Theorem II1.2.1]) the projection

scheme is suitable iff




wh e

(4.2) Tim 1AL ¢ =
1 I1+2Z2
i.e., AI- exists for all sufficiently large I and can be bounded independently of I

Note that Demko's result makes it unnecessary here to specify in which p-norm we measure

IAI-1H , since A is m-banded. The m-bandedness of A also restricts the possible
choices for r; , since A; is trivially noninvertible unless 0 < rI < m . Actually, as
we now show, for our projection scheme to be suitable we usually must have

ry = mt for all large I .

Lemma 3, Let A be m-banded, bounded and boundedly invertible. If (4.2) holds, then

4+ -
there exists const > 0 so that, for all large I =: [t,t ] ,
* »
for all £ W, 1£),*1 > const If(t 10

(4.3) . -
with I := INJ and I = (I+m)\\J .

Proof. let f ¢ 3& « Then, for ie 1 ,

(ap )iy = (a £)(4) = T Ali,)E(3) = - AW, E(F) == T AL, L) .
I = jed - €N\ T - ertur” -
Consequently 3
IA_P_fIl < IAl 0f ]
Rt ® "x*ux'
or

-1

tlglaum < A

LR EA0 max{ M2‘1+“"' I£| _l“}

in case A; is invertible.

+
If now, in addition, f ¢ ¥

A’ then Corollary 2 to Lemma 1 supplies const > 0 and

A > 1 independent of f so that
+ .
ieietn, > const AV™ngreteinn, , 3=1,2,3,...

and therefore

I_f_[t"’]llm < ng. U |£|Jnn
1

-1 -{I]|/m

< (1 + iay 1_NAl ) max{ ll_f_l le const A u;[c+1lm} .

I

If now m Na -1l ¢ ® , then, for all gufficiently large |I! ,
| 2] 4e b

-1

(1 + 1A, 7 10A1) const ATTEVR ¢y ana 1 s nAI"'lm < const'

18
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and then (4.3) follows for * =+ with const = const' .

The proof for * = - is analogous. |||

If A is strictly m-banded (hence f € ![A and i[i] =0 implies f = 0 ), then a
rarticular conseauence of (4.3) is that
*

. Ll
(4.4) llA is lin.independent over I .

This implies that

L[}
+

r , 1€ *

3
"
a
=
3
NN
"
-
0

m-r_, if *

and n't = ¢ then follows.

I

These considerations motivate the followinag definition (see [3]).

Definition. The bounded and houndedly invertible biinfinite matrix A (as a map on

—_— -1
£ , say) has its r-th band as main diagonal provided %im (A )y < e,
w —_— +>7 I,I+r

-1

Ps noted already, in that case A is the strona limit (in any zp with p < « )

+

of (A I+r)~1p Also, r =m (at least in case A is strictlv m-banded).
’

1
Pronosition 4. Let 2 bhe a strictly m-banded, bounded and boundedly invertible

matrix. Then A has its r-th band as main diagonal iff (4.3) holds.

Proof. Lemma 3 establishes the necessity of this condition. As to the sufficiency,

let B be a matrix with support in (I+r)xI . Then BR if and only if

+r, I = Pr,1er
B = A - N on [IVU(I+m)]xI

with M(s,k) € ‘LA , all e I . In other words, AI,I+r is invertible iff we can find,

for each k¥ in I , an n in ‘lk which agrees with Sy s the k-th column of

a~' , on 1% := I\(I+r) and on I~

(I+m)\ (I+r) , and, in that case, (Ek - Ek)'I

prnovides the k-th column of the inverse.

We already noted that (4.3) implies (4.4) and, in particular, that r = mt .

19




Consequently, we can find (Ej)jel+ in ‘lA so that Ed(l) = éiﬁ , all i,3 ¢ 1

then implies that

+
ng[t It <€ const
and therefore, by Corollary 2 to Lemma 1,
- B4 . +
ng[t 11 € const A , all j e I
for some fixed A € [0,1[ . Analogously, there are a4 € ﬂ; so that a.(i) = ‘_1
i,j e I and these satisfy
ugj[t+]u < const AT , all e 1 .

This reduces the task of determining Ny = M(es ,k) to solvinag the linear svevtem

P
e (1) = T n . o, (i) , i€ TVl
el + - =

k jeI VI k3 =3

and this system has a coefficient matrix which differs from the identitv matrix hv no reore

than const X'I' , hence is invertible for all sufficiently larae |[I! . ¥rite

*
n = I n g.
-_— * D -
k jer, X379

. Then we have further by (orollary 2 to Iemma 1 that
R j Il o aeq o
Qk[t +{*3)m)) < const A7(1 + ) ) "sk'I o, 3=1,2,... .

It follows that

- - - i i 7 Iom
a0 - a7 € conse naTty aMISELEZNT)

i.e., AI'1 converges exponentially fast to "' in its interior. In any event,
lim 02, o " < conmst n;s'1n°° N
1z 7T

Remark. I now question whether the seeminaly weaker condition used ir "3 to

main diagonal, viz. that (AI,I+r)-1 exist for all larce I and that

7,5 = lim (A )-1(i,j), all i,

1+2 I,TI+r

is, in fact, eauivalent to (4.3). Further, the linear independence of )} over 17

A

implies the existence of (AI,I+r)-1

20

, but 1T do not know whether the converse hnlde

define
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Remark., The matrix of Example 1, though bounded and boundedly invertible, does not
have a main diagonal since the element(s) of “l; vanish at every other point, so (4.3)
cannot hold for all large I . But (4.3) does hold for a subsequence, hence its center bhan-?
is main in this weaker sense. By contrast, any bounded and boundedly invertibhle Toenlitz
matrix does have a main Aiagonal (as is well known, see, e.g., Gokhberg and FelAman 7')
since the elements of i: are (possibly extended) exponential sums .nvolvina m‘
"frequencies", hence ‘ll; is linearly independent over any m"  consecutive points, and

uniformly so .
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